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Abstract. The accuracy of structure functions computations on the lattice may become comparable to
experimental determinations. We discuss the strategy followed by the Ze-Ro Collaboration that allows
the reconstruction of the running of the leading-twist non-singlet operator in the continuum and fully
non-perturbatively renormalized.

PACS. 11.15.Ha Lattice gauge theory – 12.38.Gc Lattice QCD calculations

1 Introduction

Structure functions normalize the calculations of hard pro-
cesses with hadrons in the initial state and large momen-
tum transfers. The prototype of such processes is given
by the Deep Inelastic Scattering (DIS) that is the inclu-
sive inelastic collision between a lepton and a hadron. The
cross-section of the process is the convolution of the “bare”
cross-section between the lepton and a parton, and the
Parton Distribution Function (PDF) fa(x). The PDF de-
scribes the probability to find a parton a with longitudi-
nal fraction x of the hadron’s momentum. These densities
teach us about the structure of hadrons. The cross-section
for DIS

dσ ∝ α2

Q4
LµνWµν (1)

is in this case expressed in terms of a lepton tensor
Lµν(k, k′) and a hadron tensor Wµν(p, q),

Lµν(k, k′) = 2(k′µkν + kµk′ν) − 2gµν(k · k′) ,
Wµν(p, q) =

1
4π

∫
d4xeiqx〈h(p)|[Jµ(x), Jν(0)]|h(p)〉, (2)

where |h(p)〉 is the hadronic state (pion, proton, . . . ), k
and k′ are the initial and the final momentum of the
lepton, and Jµ(x) is the electromagnetic current. In the
Bjorken limit, the hadronic tensor is dominated by the
light cone contributions, x2 ∼ 0, and this prevents a direct
calculation of Wµν on a Euclidean lattice, necessary pre-
requisite for lattice QCD (LQCD). There are some very
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preliminary attempts to compute directly on the lattice
the product of the 2 electromagnetic currents, and relate
this computation to the structure functions via a short-
distance expansion [1]. However, we follow a standard ap-
proach. A light cone expansion allows to relate moments
of the PDF 〈xN−1〉a(Q) = M

(N)
a (Q),

M (N)
a (Q = µ) =

∫ 1

0

dxxN−1
[
fa(x, µ) + (−1)Nfā(x, µ)

]
(3)

to expectations values of the local operator Oa,

M (N)
a (µ)pµ1 · · · pµN

= 〈h(p)|Oa
µ1···µN

(µ)|h(p)〉 . (4)

The operators are classified according to their twist τ
(leading-twist operators have τ = 2) and their flavour
quantum numbers (flavour symmetry is a good symme-
try if Q2 → ∞). The quark non-singlet operator is

OqNS
µ1···µN

=
1

2N
ψ̄γ[µ1Dµ2 · · ·DµN ]

λf

2
ψ− trace terms , (5)

and the quark and gluon singlet operators are

OqS
µ1···µN

=
1

2N
ψ̄γ[µ1Dµ2 · · ·DµN ]ψ − trace terms ,

OgS
µ1···µN

=
∑

ρ

Tr
{
F[µ1ρDµ2 · · ·DµN−1FρµN ]

}
−trace terms , (6)

where Dµ is a covariant derivative and [· · ·] means sym-
metrization on the Lorentz indices. Other interesting
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quantities can be computed on the lattice like the mo-
ments of the spin-dependent structure functions g1 and
g2, and moments of the transversity structure function h1

(preliminary results can be found in [2,3]).

2 Lattice QCD

Euclidean space-time is replaced by a 4-dimensional hy-
percubic lattice. In the theory in the continuum, expecta-
tion values are expressed in terms of functional integrals
over continuum fields:

〈Γ 〉 =
1
Z

∫
D[A]D[ψ̄]D[ψ]Γ [A, ψ̄, ψ]e−S[A,ψ̄,ψ] . (7)

In numerical simulations, they are suitable to a lattice
and correlation functions are obtained from averages of
properly sampled lattice field configurations:

〈Γ 〉 = lim
Nconf→∞

1
Nconf

∑
Nconf

Γ [conf] . (8)

The lattice Wilson-Dirac operator is given by

DW =
1
2
{γµ(∇∗

µ + ∇µ) − a∇∗
µ∇µ} , (9)

where the forward and the backward derivatives are

∇µψ(x) =
1
a
[U(x, µ)ψ(x + aµ̂) − ψ(x)] ,

∇∗
µψ(x) =

1
a
[ψ(x) − U(x− aµ̂, µ)−1ψ(x− aµ̂)] .

(10)

The QCD action on the lattice may now be written in the
form

S =
1
g20

∑
p

Tr{1 − U(p)} + a4
∑

x

ψ̄(x)[DW + m0]ψ(x) .

(11)
The sum in the gauge field part of the action runs over
all oriented plaquettes p and U(p) denotes the product of
the gauge field variables around p:

U(p) = U(x, µ)U(x + µ̂, ν)U(x + ν̂, µ)−1U(x, ν)−1 . (12)

The Wilson term in the fermionic part of the action
(a∇∗

µ∇µ) is necessary to remove the “doublers”, but un-
fortunately it breaks chiral symmetry even in the massless
theory. For technical reasons, the matrix elements can be
simulated only in a region of the quark masses that cor-
responds to mπ ≥ 500 MeV. One needs then to perform a
chiral extrapolation for quantities like the moments of the
PDF, and this can be a source of systematic errors. A re-
cent formulation of chiral fermions on the lattice [4] (over-
lap [5], domain-wall [6], fixed point [7]) may reduce these
systematic uncertainties. However, they are very expen-
sive to simulate. On the lattice the Grassmann variables
are integrated out, and one then has

Z =
∫

D[U ]det(DW[U ] + m0)e−Sg[U ] . (13)

It is faster and not so far from real world to do the simu-
lation with det(DW[U ] + m0) = 1. This approximation is
called quenching. This means there are no sea quarks in
the calculations: the internal quark loops are neglected.
Lattice computations, like normal experiments, are af-
fected by statistical and systematic errors. The statistical
errors can be reduced, in principle, increasing the statis-
tics. The main sources of systematic errors are: 1) dis-
cretization of the space-time; 2) perturbative renormal-
ization; 3) chiral extrapolation; 4) quenching. Usually, the
continuum limit is reached with a rate proportional to a,
but convergence can be improved by modifying the defini-
tion of the lattice action S[U, ψ̄, ψ] and of the observable
Γ by the addition of terms that naively go to zero in the
continuum limit and cancel certain lattice artifacts:

– before improvement, 〈Γ 〉 =Γ0 + aΓ1 + a2Γ2 + O(a3) ;

– after improvement, 〈Γ 〉 =Γ0 + a2Γ ′
2 + O(a3) .

(14)

3 Non-perturbative renormalization

The Ze-Ro Collaboration aims at solving 2 of the pos-
sible sources of systematic uncertainties: first, follow-
ing the scale evolution of the local operator fully non-
perturbatively and second, performing a well-controlled
continuum limit [8–12]. Local operators need to be renor-
malized. In the non-singlet case there is no mixing between
quark and gluon operators and we can write

OR(µ) = ZO(aµ)Obare(a) . (15)

Renormalization has to be done at some scale µ where per-
turbative calculations provide the determination of mo-
ments of parton densities from experimental data. But
the hadron matrix elements must be able to feel the
distances related to the hadronic bound state governed
by a non-perturbative scale (∼ ΛQCD). One can hardly
accommodate on a single lattice a large ratio of scales
( µph

ΛQCD
∼ 100) with negligible lattice artifacts. One should

be able to renormalize at a strong interaction scale and
then calculate a non-perturbative evolution up to a per-
turbative scale where contact with perturbation theory,
and hence with the experiment, can be made. The strategy
pioneered by the Alpha Collaboration [13] is to use a finite-
size renormalization scheme called Schrödinger Functional
(SF) scheme.

3.1 Schrödinger Functional

Every renormalization scheme on the lattice must satisfy
general properties like: 1) it must be possible to change
easily the renormalization scale; 2) the scheme has to guar-
antee a good numerical signal. The Schrödinger Functional
is a finite-volume scheme that satisfies both these require-
ments. QCD is set up on a volume T × L3 with peri-
odic boundary condition in spatial directions and Dirichlet
boundary conditions in time. The finite extent L is used as
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Fig. 1. Continuum limit of the lattice SSF for two ways of
discretizing fermions on the lattice.

the renormalization scale µ = 1/L, thus the finite-volume
extent is a probe for the physics taking place at this scale.
The continuum limit is performed letting a → 0 at fixed L,
but of course it is not possible to perform the continuum
limit of the renormalization constant itself, that would di-
verge. The crucial ingredient is the so-called Step-Scaling
Function (SSF). Assuming that we have renormalized a
matrix element at a certain scale µ0, then the matrix ele-
ment at a different scale µ will be given by

OR(µ) = σ(µ/µ0)OR(µ0) , (16)

where σ(µ/µ0) = ZSF(µ0)/ZSF(µ) is the SSF. The SSF
describes the full scale evolution of the scale-dependent
quantity of interest. Different observables need a different
SSF. A very important property of the SSF is that it can
be split into several steps. Identifying the scale µ = 1/L
and choosing steps of size 2 we have

σ(L0/L) = σ(2L/L)σ(4L/2L) · · · σ(L0/(L0/2)) . (17)

The aim is to have the SSFs of eq. (17) non-perturbatively
and in the continuum. An important remark is that the
SSF σ(2L/L) has indeed a well-defined continuum limit
such that the whole procedure makes sense. On the lattice
we introduce the lattice SSF

Σ(a) = σ(2L/L, a) . (18)

Σ(a) is the quantity that can be computed on the lattice.
The continuum SSF is then reached through

σ = lim
a→0

Σ(a)
∣∣∣
µ−1=Lfixed

. (19)

In the a → 0 limit, the physical scale L is kept fixed. This
can be achieved by fixing the value of the renormalized

Fig. 2. Continuum limit of the renormalized matrix element
for two ways of discretizing fermions on the lattice.

gauge coupling ḡ. In fig. 1 we show the approach to
the continuum limit of Σ(a) (18), for two ways of
discretizing fermions on the lattice, one with standard
fermions (dashed lines) using the action of eq. (11) and a
non-perturbatively improved action (full lines). Both Σ’s
extrapolate to the same SSF showing the universality of
the continuum limit. The individual plots are obtained
at fixed values of the running coupling ḡ corresponding
to a fixed scale 1/L. Figure 1 demonstrates that the
approach to the continuum limit of the lattice SSF is
well controlled. The second important ingredient is the
computation of the renormalized matrix element at a
non-perturbative scale µ0 where finite-volume effects
are negligible. This can be done by computing the bare
matrix element of the local operator between hadron
states (pions in our case), and the renormalization
constant at the same bare coupling g0. Then it is possible
to do a continuum and chiral extrapolation, at the fixed
scale µ0. In fig. 2 we show the continuum limit of the
renormalized matrix element with two different lattice
fermionic actions. Putting together, following eq. (16),
the renormalized matrix element at a non-perturbative
scale µ0, and the SSF, we have computed the second
moment of the pion non-singlet structure function in
the continuum, but in the somehow unusual Schrödinger
Functional scheme. The experimental data are usually
parameterized in the more common MS scheme.

4 Results

The last step is to use the renormalization group equa-
tion to match the simulation data with the experimental
data. The idea is to build a quantity that is scheme in-
dependent, and from which it is possible to switch to any
preferred scheme. This quantity exists and for a matrix el-
ement it is called Renormalization Group Invariant (RGI)



368 The European Physical Journal A

matrix element, and it is nothing else than the integration
constant of the renormalization group equation. In other
words, in the limit µ → ∞ of the renormalized matrix
element

〈x〉RGI = 〈x〉scheme(µ)f scheme(ḡ2(µ)) (20)

with

f scheme(ḡ2(µ))=(ḡ2(µ))−γ0/2b0exp

{
−
∫ ḡ(µ)

0

[
γ(x)
β(x)

− γ0
b0x

]}
,

(21)
where ḡ is the renormalized coupling in the adopted
scheme, γ(g) is the anomalous dimension of the local
operator, β(g) is the β-function, and scheme stands for
the preferred scheme used for the computation. Our pre-
ferred scheme to compute the non-perturbative evolution
to a perturbative scale µ of the matrix element is the SF
scheme:

〈x〉RGI = 〈x〉SF(µ)fSF(ḡ2(µ)) (22)

Once we have checked that the evolution is safely de-
scribed, by a 2-loop anomalous dimension, and a 3-loop
β-function (γ1 and b2 a re scheme dependent and must be
computed in the SF scheme), it is possible to obtain

〈x〉RGI = 0.222(24) . (23)

From this number and from eq. (20) is possible to derive
the MS number,

〈x〉MS
quenched(µ=2.4 GeV)= 〈x〉RGI/f

MS(ḡ2(µ))=0.30(3),

〈x〉experiment(µ=2.4 GeV) = 0.23(2) .
(24)

The result seems to exceed the experimental value. The
chiral extrapolation of the renormalized matrix element
is done in the usual way quadratically in the pion mass.
There are recent claims [14] that try to explain this
discrepancy, already noticed by other collaborations
(QCDSF, LHPC-Sesam), using chiral Perturbation
Theory (χPT), to go to zero quark mass. They modify,
adding a phenomenological cut-off fitted by the data,
the formula computed with χPT and find then a good
agreement with the experimental value. We believe that
the value of the valence quark masses simulated are too
big (mπ ≥ 500 MeV) to believe that χPT can be trusted.
Another source of systematic error is quenching. As an ex-
ercise, fix at some very low energy (500 MeV) the amount
of momentum carried by valence quarks and follow its
(2-loop) evolution in the quenched and in the unquenched

case. The ratio of the quenched over the unquenched case
at a scale of 2.4 GeV is 1.12, if the input valence average
momentum was 0.5, and 1.08 if it was 0.4. One obtains
a bigger value in the quenched case as a consequence of
the fact that, due to the faster running of the coupling
in this case, the gluon bremsstrahlung is reduced with re-
spect to the unquenched case. There are results from the
QCDSF and LHPC-Sesam collaborations [3,15] that show
an agreement between the unquenched and the quenched
matrix element. Also in this case one should consider the
rather high value of the sea quark masses used in the sim-
ulation. As a final comment, we mention that the main
result of such a computation on the lattice, is the Renor-
malization Group Invariant (RGI) matrix element. The
reason is that RGI quantities can be used directly in other
regularization schemes.
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(1996); S. Capitani, M. Lüscher, R. Sommer, H. Wittig,
Nucl. Phys. 544, 669 (1999).

14. W. Detmold et al., Phys. Rev. Lett. 87, 172001 (2001).
15. S. Capitani et al., Nucl. Phys. B Proc. Suppl. 106, 299

(2002).


